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ABSTRACT 
This work investigates the elasto-plastic response of 

platelets-like inclusions reinforced polymer composites 

showing an imperfect interface. The solution of the 

heterogeneous material problem is solved through a kinematic 

integral equation. To account for the interfacial behaviour, a 

linear spring model LSM is adopted, leading to an expression 

of the modified Eshelby's tensor. As a consequence, the 

interfacial contributions with respect to the strain concentration 

tensor within each phase as well as in the average strain field 

are described by a modified version of the Mori-Tanaka scheme 

for the overall response. The non-linear response is established 

in the framework of the J2 flow rule. An expression of the 

algorithmic tangent operator for each phase can be obtained 

and used as uniform modulus for homogenisation purpose. 

Numerical results are conducted on graphene platelets GPL-

reinforced polymer PA6 composite for several design 

parameters such as GPL volume fraction, aspect ratio and the 

interfacial compliance. These results clearly highlight the 

impact of the aspect ratio as well as the volume fraction by a 

softening in the overall response when imperfection is 

considered at the interface. Present developments are 

analytical-based solutions. They constitute a theoretical 

framework for further multi-scale applications in automotive. 

The crashworthiness simulation incorporating an influence of 

the interfacial behaviour on the strain energy absorption SEA is 

of interest. 

Keywords: Interface, Modified Eshelby's tensor, 

Micromechanics, Graphene platelets. 

1 INTRODUCTION 
The enhancement of nano composites properties has 

gained worthy significance with use of multifunctional nano 

fillers like the graphene. This latter finds direct applications 

with polymer composite materials where substantial property 

enhancements have been noticed at much lower volume 

fraction [1] with respect to polymer composites containing 

conventional micron-scale fillers (such as glass or carbon 

fibres). For deriving such properties, multi scale analyses 

combining molecular mechanics theories and continuum 

models have been developed for graphene polymer composites. 

The graphene properties are often derived at atomistic scale and 

the nano particles are treated as equivalent continuum particles 

[2, 3] that are embedded in the polymer matrix through 

conventional homogenisation techniques. 

Despite graphene has been used to increase stiffness, 

toughness and thermal conductivity of polymer resins by a 

large margin [4, 5, 6, 7], there are still much technological 

challenges to overcome mainly in the material modelling. This 

is characterised by the lack of sufficient knowledge on 

graphene composites for structural applications describing 

interfacial properties between graphene and polymer matrix 

under severe loading conditions. It is well-known that the 

interface characterises the load transfer between the 

particles/fibres and the matrix. Therefore, it represents an 

influential parameter that can significantly change the overall 

properties. Indeed, interface is subjected to defects (debonding, 

dislocations and cracks) between reinforcements and the matrix 

and can be identified as one of the predominant damage 

mechanics in particle and fibre-reinforced composites [8]. 

Then, the accuracy of the composite response needs a proper 

accounting for the properties of the interface. Several 

micromechanics models have been developed for that purpose. 

Among them, one can distinguish the interphase models as well 

as interface models. The firsts i.e the interphase models 
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introduce the interfacial zone as a layer (with a given thickness 

and properties) between the particle or fibres and the matrix. 

First interphase model known as "three-phase model" are due 

to Walpole [9] and then followed by works by Christensen and 

Lo [10], Herve and Zaoui [11], Cherkaoui et al. [12] and 

Lipinski et al. [13]. The seconds i.e the interface models 

introduce discontinuities in the displacement and/or stress 

fields at the interface. One can refer to cohesive zone models 

CZM (Matous and Guebelle [14], Inglis et al. [15], Tan et al. 

[16, 17]), free sliding model FSM (Ghahremani [18]) and 

interface stress model ISM (Sharma et al. [19], Sharma and 

Ganti [20], Sharma and Wheeler [21], Duan et al. [22, 23]) as 

well as linear spring model LSM (Hashin [24, 25], Qu [26, 27], 

Zhong and Meguid [28]). Other models for instance the 

dislocation-like approach in works by Yu et al. [29, 30] and 

finally the equivalent inclusion concept in works by Zhao and 

Weng [31, 32] which later have been used by Yanase and Ju [8] 

to study the damage response of spherical particles reinforced 

composites, should be cited. 

This work aims to analyse the effect of an imperfect 

interface on the non-linear response of graphene platelets GPL 

composite materials. The properties of the GPL which have 

been widely derived at atomistic scale are not the scope of this 

work. Herein, advantage is taken of these derivations by 

considering GPL as continuum phases interacting with the 

polymer matrix through a slightly weakened interface. The 

LSM model is then considered for its simplicity and flexibility 

to treat imperfect interface with limited number of model 

parameters [8]. The solution of the heterogeneous material 

problem is obtained by the kinematic integral equation of 

Dederichs and Zeller [33]. The non-linear framework, which is 

that recently used by Azoti et al. [34, 35], is based on a Hill-

type incremental formulation and the classical J2 flow rule. 

Therefore, for each phase, the consistent (algorithmic) tangent 

operator is obtained from the continuum (elasto-plastic) tangent 

operator and thus from works by Doghri and Ouaar [36]. By 

accounting for the contribution of the interface, on the one 

hand inside the strain concentration tensor of the inclusions 

through the modified Eshelby tensor [26, 27], and on the other 

hand in the average strain field, a modified version of the Mori-

Tanaka is derived for the effective properties. 

The paper is organised as follows: section 2 establishes the 

general framework of a multi-scale homogenisation by deriving 

the global strain concentration tensor; in section 3, the 

algorithmic tangent operators derived from the classical J2 flow 

theory are recalled. Section 4 gives expressions of the 

imperfect interface in terms of traction and displacements as 

well as the modified Eshelby's tensor while section 5 derives 

the modified Mori-Tanaka scheme for overall responses. The 

model predictions are therefore compared with open literature 

data in section 6 where a systematic analysis of micro 

parameters (aspect ratio, volume fraction, interfacial 

compliance) is carried out for a GPL-reinforced polymer PA6 

under uniaxial tests. 

 
2 FUNDAMENTALS OF MICROMECHANICS 

 

2.1 Kinematic integral equation 
Let us consider a composite material consisting of 1N   

phases. The matrix (phase 0) can be a specific constituent 

containing all remaining phases. To study this composite, a 

representative volume element (RVE) is considered. On the 

RVE boundaries (Fig. 1), admissible macroscopic static or 

kinematic loads are applied in the absence of body forces and 

inertia terms. The micromechanics scale transition consists, 

firstly, in the localisation of the macroscopic strain tensor E  

through a fourth order global strain concentration tensor  rA  

and, secondly, in the homogenisation, which uses averaging 

techniques to approximate the macroscopic behaviour. Note 

that  rA remains the unknown parameter that contains all the 

information about the microstructure. The effective properties 

of the RVE are given by: 

    
1

:eff

V

r r dV
V

 C Ac  (1) 

where  rc  denotes the local uniform modulus and V  the 

volume of the RVE. The operator ":" stands for the tensorial 

contraction over two indices. The global strain concentration 

tensor  rA  links the local strain  r  to the macroscopic 

strain E  as follows: 

     :r r A E  (2) 

The decomposition of the local uniform modulus into a 

homogeneous reference part R
c  and a fluctuation part c  is 

given such as: 

      Rr r r c c c  (3) 

Equation (3) enables the derivation of the kinematic integral 

equation of Dederichs and Zeller [33]. In terms of strain fields, 

the kinematic integral equation reads: 

 

 
 

Figure 1. Illustration of a RVE 

 

       R

V

r r r r r dV     E c   (4) 
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where R
E  is the strain field inside the reference infinite 

medium and  r r  is the modified Green tensor. 

 

2.2 Global strain concentration tensor based on 
Eshelby’s ellipsoidal inclusion 

The kinematic integral equation (4) represents the formal 

solution the global strain concentration tensor is derived from. 

Based on an iterative procedure proposed by Vieville et al. 

[37], the global strain concentration tensor  I rA  for a thI  

phase of the RVE is given as: 

     

 

1

:I I I

I

r r r

r

    




A

A I

a a
 (5) 

I  represents the fourth order symmetric identity tensor and   

is the mean-field volume average of  . The quantity  I ra  is 

the local strain concentration tensor with respect to the 

reference medium such that: 

     :I I Rr r Ea  (6) 

The thI  concentration tensor  I ra  is given by: 

 

   

   

0

1

1

0

:

             : : :

0,1,2,3,.....,

I

I II I

i

N
IJ J J

i

J
J I

r

r r

r r

I N








 

     
  

   
   
 

 



I

I

I

a

a T c

T c a

 (7) 

with N  the number of phases considered in the composite. 

     I I Rr r r  c c c . In equation (7),  I

i ra  represents an 

approximation of the thI  concentration tensor at iteration i . 
II

T  and IJ
T  are the interaction tensors in one-site (OS) and 

multi-site (MS) versions, respectively. Their general expression 

is: 

 
1

I J

IJ

I V V

r r dVdV
V

   T   (8) 

The computational framework of II
T  and IJ

T  is proposed by 

Fassi-Fehri [38]. 

Let us suppose that the geometry of any phase within the RVE 

is ellipsoidal. The Eshelby's inclusion concept [39] assumes 

that the strain field inside an ellipsoidal inclusion is uniform. 

Therefore, a characteristic function  r  can be defined such 

as [37]: 

  
1 if 

0 if 

Ir V
r

r V



 


 (9) 

Based on equation (9) and the average strain field within an 

inclusion I  such as: 

  
1

I

I

I V

r dV
V

    (10) 

the above kinematic integral Eq. (4) can be rewritten as: 

0

: :

0,1,2,3,.....,

N
I R IJ J J

J

I N




  


 

E T c 
 (11) 

and the local concentration tensor Eq. (7) becomes: 

0

1

1

0

:

         : : :

0,1,2,3,.....,

I

I II I

i

N
IJ J J

i

J
J I

I N








 

     

  

   
   
 

 



I

I

I

a

a T c

T c a

 (12) 

In the case of OS version (most frequent developments in the 

literature) and for isotropic medium, the interaction tensor II
T  

can be deduced from the Eshelby's tensor S  such as 

 
1

:II R


 ST c  In such condition and neglecting the 

interactions among inclusion I  and its neighbours J , i.e. all 

the tensors 0IJ T , the local concentration tensor I
a  reads 

more simple expression: 

 
1

1

: :

0,1,2,3,.....,

I R I

I N


       

 

I Sa c c
 (13) 

Finally, the global strain concentration tensor I
A is calculated 

by substituting Eq. (13) in Eq. (5) Therefore, for any 

homogenization model defined by I
A , the effective or macro-

stiffness tensor eff
C is given through a discrete form of the Eq. 

(1) by: 

 

0

:

N
eff I I

I

I

f



C Ac  (14) 

with the volume fraction If  defined as: 

 I
I

V
f

V
  (15) 

 
3 NON LINEAR TANGENT OPERATORS 

Let us consider that one or more phases behave elasto-

plastically within the RVE. Referring to the work of Doghri and 

Ouaar [36], at least two tangent operators can be defined: the 

“continuum” (or elasto-plastic) ep
C  tangent operator, which is 

derived from the rate constitutive equation, and the “consistent” 

(or algorithmic) lga
C  tangent operator, which is solved from a 

discretisation of the rate equation in time interval  1,n nt t  : 

 
lg

1 1

:

:

ep

a
n n  

 




C

C

&& 

 
 (16) 

The explicit expressions of the tangent operators are derived 

from the classical J2 flow rule such as: 



 4 Copyright © 2016 by ASME 

 
2

2

3 0

ep el G

h

dR
h G

dp


   


   



C C N N

 (17) 

 
2lg 2

1 3

2

eqa ep

tr
eq

dev
eq

G p






 
  



  

     

N
C C

N
I N N





 (18) 

In equations (17) and (18), G  denotes the material shear 

modulus while the operator “ ” designates the tensorial 

product. el
C  represents the elastic stiffness tensor and  R p  is 

the hardening stress with p  the accumulated plastic strain. N  

represents the normal to the yield surface in the stress space. 
tr
eq  denotes a trial elastic predictor of eq . devI  stands for the 

deviatoric part of the fourth order symmetric identity tensor. 

The knowledge of internal variables such as p  and 

tr
eq remains crucial for computation of the algorithmic tangent 

operator lga
C  in Eq. (18). This tangent operator will be later 

used as uniform modulus to compute the overall behaviour of 

the composite in section 5. A detailed procedure about internal 

variables computation can be found in [35]. 

 
4 IMPERFECT INTERFACE AND THE MODIFIED 
ESHELBY’S TENSOR 

Let us consider the interface   between two phases of a 

composite material. The linear spring model LSM supposes the 

continuity of the traction vector across the interface while the 

jump of displacement field is considered to be proportional to 

the traction on that interface. These assumptions are written 

like: 

   

   

0ij j ij ij j

i i i ij jk k

n n

u u u n

    

   

 

 

     
  


    
 

 (19) 

with jn  the components of a unit vector normal to the 

interface.  iu  
 and  iu  

 stand for the values of  iu x  

when x reaches the interface from outside and inside of the 

inclusion respectively.  ij   and  ij   are the dual in 

terms of stress. The second order tensor components ij  denote 

the compliance of the interface. It appears that 0ij   leads to 

a perfectly bonded interface whereas ij   represents a 

completely debonded interface. The expression of ij  is given 

by [26, 27]: 

  ij ij i jn n       (20) 

where the constants   and   stand for the extent of 

interfacial sliding and the interfacial separation, respectively. 

ij  is the Kronecker symbol. In the case of ellipsoidal 

inclusions, Qu [26, 27] has determined the Eshelby's tensor for 

these inclusions embedded in an elastic matrix and showing a 

slightly weakened interface i.e when ij  is very small. 

Therefore, the modified Eshelby's tensor for this problem 

yields: 

   : : :   M
S S I S H I Sc  (21) 

where S  denotes the original Eshelby's tensor [39] and H  

stands for a four order tensor depending on the interface 

properties and the geometry of the inclusion. Expressions of H  

for ellipsoidal inclusions are given in Appendix. In others 

terms, Eq. (21) can be written such as: 

 
         

ijkl ijkl ijpq ijpq pqrs

rsmn mnkl mnkl

S S I S H

C I S

  

 

M

 (22) 

 
5 MODIFIED MORI-TANAKA SCHEME FOR OVERALL 
RESPONSES 

General considerations on Mori-Tanaka scheme can be 

found in works by Azoti et al. [34]. Therefore, the MT effective 

properties are given by: 

0

0 0
0

1

:

        : :

N
MT I I

I

I

N
I I

I

I

f

f f











 
  
 





C A

A

c

c c a

 (23) 

with 0
A  the global strain concentration of the matrix. By 

accounting for the interface contributions, modifications come 

out with the definition of the average strain field: 

 

 

 
0

1

1 1
   

2

V

N
I

I

I

x dV
V

f dS
V








      





 

E

u n n u





 (24) 

where   represents the union of all interfaces. The 

combination of Eq.(19)-b and Eq.(24) leads to the following 

expression of the average strain: 

   

0

1

1 1
     

2
I

N
I

I

I

N

I

f

dS
V












      




 

E

n n n n



    

 (25) 

with I  the surface of the volume IV . 

The evaluation of the integral terms in Eq.(25) remains tricky 

for an arbitrary interface geometry. However by taking 

advantage of developments by Qu [26] for slightly weakened 
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interface, the stress distribution on the surface I  can be 

replaced by its average over the volume IV  leading to a 

simplified form of Eq.(25) such as: 

0 1

N N
I I I

I I

I I

f f
 

  E     (26) 

Using Eq.(5) and derivations in works [34], one can 

demonstrate the following relationship between the average 

strain within an inclusion and the matrix such as: 

 0:I I a   (27) 

where I
a  in the OS-version yields: 

 
1

1

: :

1, 2,3,.....,

I R I

I N


  

      
 

M
I Sa c c

 (28) 

Combining Eq.(27) and Eq.(26) leads to 

0

0 1

: : :
N N

I I I I
I I

I I

f f
 

 
  
 
 E a c a   (29) 

The inversion of Eq.(29) 
1

0

0 1

: : :
N N

I I I I
I I

I I

f f



 

 
  
 
  Ea c a   (30) 

in conjunction with Eq.(2) leads to the modified global 

concentration tensor of the matrix 0
A  such as: 

1

0

0 1

: :
N N

I I I I
I I

I I

f f



 

 
  
 
 a c a   (31) 

Substituting Eq.(31) into Eq.(23) gives the modified Mori-

Tanaka effective properties such as: 

0
mod 0

1

1

0 1

:

           : : :

N
MT I I

ified I

I

N N
I I I I

I I

I I

f f

f f





 

  
   

  


 
 

 



 

C c c a

a c a

 (32) 

In the case a 2-phase composite, Eq.(32) yields 

 

 

0
mod 0

1

0

:

            : : :

MT I I
ified I

I I I
I

f f

f f


  



   
 

C

I I

c c a

c a

 (33) 

 
6 NUMERICAL RESULTS AND DISCUSSIONS 

 

6.1 Model validations 
The capability of the present model to reproduce results 

from the open literature is carried out herein. In a first instance, 

the model predictions are compared with the earlier works by 

Qu [26]. Let us consider a composite consisting of an isotropic 

matrix and aligned isotropic ellipsoidal inclusions of 

dimensions  1 2 3, ,a a a  with aspect ratio AR  such as 

3 1AR a a  and 1 2a a a  . A pure sliding case is considered 

i.e 0   and 0  . The sliding interfacial separation 

constant   is given such as 0 0a    with 0  the sliding 

coefficient and a  the ellipsoid semi-axis. The material 

properties for this analysis are gathered in Table 1. 

 

Table 1. Material properties from works by Qu [26] 

 

Matrix Inclusions 

0  0  I  I  AR      

1.0GPa 0.4 30GPa 0.25 2.0 0 0a 

 

0 

 

Table 2. Material properties from works by Yanase and Ju [8] 

 

Matrix Inclusions 

0E  0  IE  I  AR    

3.0GPa 0.4 76.0GPa 0.23 1.0 0 

 

Figure 2 shows the evolution of the normalised effective 

transverse and longitudinal Young modulus 11 0E   and 

33 0E   as well as the effective longitudinal Poisson's ratio 31  

versus the volume fraction of the inclusions. These predictions 

are concerned with the originate Mori-Tanaka scheme for 

perfect bonded inclusions denoted MT , the originate MT using 

only the modified Eshelby's tensor denoted 0,  0.3MT   , and 

finally the modified MT using the modified Eshelby's tensor 

denoted 0. ,  0.3Modif MT   . Different trends are obtained 

for the Young moduli and the Poisson's ratio. Indeed, the higher 

the inclusions volume fraction, the higher the Young moduli 

11 0E   and 33 0E  . However, accounting for a pure sliding 

interface has led to a decrease of the effective stiffness. For the 

Poisson's ratio 31 , while a decrease is noticed for others 

methods i.e MT  and 0,  0.3MT   , a parabolic trend is 

observed when a weakened interface 0. ,  0.3Modif MT    is 

accounting for with a minimum at 0.3If  . A fair agreement is 

found between the present predictions with respect to results by 

Qu [26] showing by the way the effectiveness of the numerical 

integration method used for solving equations in the Appendix. 

Furthermore, the present model is confronted to results by 

Yanase and Ju [8] on spherical particle-reinforced composites. 

The material properties used for this study is presented in Table 

2. 

Figure 3 presents the influence of the sliding coefficient 0  on 

the normalised effective Young modulus 0effE E . Under the 

perfect interface condition, i.e 0 0   and beyond a volume 

fraction 0.2If   the MT scheme underestimates results by 

Yanase and Ju [8]. One can explain this observation by the 

well-known accuracy issues with the MT when a high volume 

fraction is achieved. Subsequently, when the interface  
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  11 0 a E   

 

  33 0 b E   

 

  31 c   

Figure 2. Effective elastic moduli of ellipsoidal inclusions 

reinforced composite 

 

 
Figure 3. Effective young modulus of spherical particles 

reinforced composite 

 

imperfection is considered with 4
0 2.10  , a significant 

decrease of the 0effE E  is noticed with respect to the case of 

perfect interface. However, the effective response shows an 

increase with the volume fraction and good agreement is 

obtained with results by Yanase and Ju [8]. For high interface 

damage i.e 0   , 0effE E  shows a decrease with the 

volume fraction evolution. Again, the predictions remain in 

good agreement with results by Yanase and Ju [8]. 

 

Table 3. Material properties for GPL/PA-6 composite 

materials 

 

Matrix Inclusions 

0E  0  Y  h  m  IE  I  

2GPa 0.3

9 

60.5MP

a 

63MPa 0.

4 

103GP

a 

0.22 

 

 

6.2 GPL-reinforced polymer PA-6 composite materials 
As application of the present development to polymer 

composite, a GPL reinforced PA-6 polymer matrix is 

considered. The GPL are assumed elastic while the PA-6 matrix 

is considered elasto-plastic with an isotropic hardening power 

law defined as   mR r hr . The material properties are 

presented in Table 3. The macro stress-strain response is 

studied under uniaxial loading. The loading is given by a macro 

stain increment  E E =   with 

 1 1 2 2 3 3

1

2
     e e e e e e . The effective response of the 

composite is assessed through different design parameters for 

instance the platelets aspect ratio AR , the volume fraction If  

and the interface sliding coefficient 0 . 
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Figure 4 shows the evolution of the equivalent stress-strain 

response versus the AR . This parameter has a significant 

impact on the effective response. Indeed, an increase of the 

effective stiffness is noticed with the decrease of the AR . 

Lower values such as 110AR   corresponding to platelets-like 

shape show more effective reinforcement character than 

circular-like shape i.e 1AR  . 

 

 
Figure 4. Aspect ratio variation of GPL/PA-6 composite for 

0.1If   and 0 0.3   

 
Figure 5. Volume fraction variation of GPL/PA-6 composite 

for 210AR   and 0 0.3   

 

In addition, the variation of the volume fraction If  is 

analysed in Figure 5. The predictions reproduce a trend similar 

to the matrix for 0If   and subsequently shifts towards higher 

stress with the increase of If . The influence of the interface 

imperfection is analysed in Figures 6 and 7. The higher the 

sliding coefficient 0 , the lower and softer the effective stress-

strain response as shown by Figure 6. In Figure 7, the results 

obtained from a perfect interface and an imperfect interface 

modelling are compared. the higher the volume fraction, the 

higher the gap between the two responses and the lower the 

effective response that accounts for the interface imperfection. 

 

 
Figure 6. Interface sliding compliance variation of GPL/PA-6 

composite for 210AR   

 
Figure 7. Influence of imperfect versus perfect interface of 

GPL/PA-6 composite for 210AR   

 
6 CONCLUSION 

The nonlinear elasto-plastic response of graphene platelets 

reinforced PA-6 polymer has been analysed regarding the 

interfacial behaviour. For such a purpose, the linear spring 

model LSM is considered for its simplicity and flexibility to 

treat imperfection at the interface with limited number of model 

parameters. Therefore, a modified expression is obtained for 

both the Eshelby's tensor and the Mori-Tanaka scheme for 

deriving the effective response of the composite. 

Results highlight the importance of the aspect ratio that 

leads to the most effective reinforcement response at low 

values. By considering imperfection, the sliding coefficient also 

shows a significant impact on the composite response versus 

the volume fraction. The higher the volume fraction, the higher 

the softening in the stress-stress response. 
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The present developments are purely analytical-based 

heterogeneous composites solutions. They are therefore less 

computationally expensive than FE analysis. Results of this 

study are expected to be integrated in the design of new 

graphene based composite for automotive applications. As 

perspective, the influence of the sliding coefficient 0  in a 

multi-scale crashworthiness simulation is of interest mainly for 

the determination of the strain energy absorption SEA. This 

micromechanics solution can therefore be related to each Gauss 

integration point within the macro-model. 
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APPENDIX 

The components of the interfacial tensor H  are given by: 

 ijkl ijkl ijklH P Q      (34) 

where ijklP  and ijklQ  are given for ellipsoidal inclusions by: 

 

2
1

0 0

2
3

0 0

T

1 2 3

3
sin

16

3
sin

4

sin cos sin sin cos
; ;

ik j l jk i l

ijkl
il k j jl k i

ijkl i j k l

i i

n n n n
P d d

n n n n

Q n n n n d d

n n

n
a a a
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 
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  
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
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     
    
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 
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n
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 (35) 
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